Fluorescence in two-photon-excited diffusible samples exposed to photobleaching: a simulation-based study.
نویسندگان
چکیده
We created a simulation model to investigate the characteristics of fluorescence in two-photon-excited samples. In the model, the sample is a diffusible solution of fluorophore molecules, which is divided into cubic cells and illuminated by a train of focused laser pulses described as a Gaussian beam. Simulating the state transitions according to a multilevel photodynamic model (also including photobleaching and intersystem crossing), the simulator provides the expected number and the spatial distribution of emitted photons over time. Our simulations demonstrated how the illumination laser power, diffusion, and the photodynamic parameters of the fluorophore affect fluorescence. We revealed the unusual fluorescent profile that evolves as photobleaching progresses: the most photons are not emitted from the focus (where a "dark hole" appears) but from an ellipsoid around the focus. The model could be adapted to several fluorescent techniques (such as two-photon microscopy and fluorescence recovery after photobleaching). Furthermore, it might help to optimize the operating parameters of the measurement devices (e.g., in order to reach higher image quality and lower photobleaching).
منابع مشابه
Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
Under high-excitation irradiance conditions in one- and two-photon induced fluorescence microscopy, the photostability of fluorescent dyes is of crucial importance for the detection sensitivity of single molecules and for the contrast in fluorescence imaging. Herein, we report on the dependence of photobleaching on the excitation conditions, using the dye Rhodamine 6G as a typical example. The ...
متن کاملTwo-Photon Fluorescence Microscopy: Basic Principles, Advantages and Risks
The application of two-photon excitation to fluorescence microscopy has become a powerful tool for studying biological function in live tissue and offers many advantages over conventional imaging techniques. Neuroscientists in particular have used this technology to image physiological functioning in microscopic and subcellular neural compartments. Neurons can be imaged deep within highly light...
متن کاملImage-based adaptive optics for two-photon microscopy.
We demonstrate wavefront sensorless aberration correction in a two-photon excited fluorescence microscope. Using analysis of the image-formation process, we have developed an optimized correction scheme permitting image-quality improvement with minimal additional exposure of the sample. We show that, as a result, our correction process induces little photobleaching and significantly improves th...
متن کاملSingle-molecule detection using continuous wave excitation of two-photon fluorescence.
Two-photon fluorescence (TPF) is one of the most important discoveries for biological imaging. Although a cw laser is known to excite TPF, its application in TPF imaging has been very limited due to the perceived low efficiency of excitation. Here we directly excited fluorophores with an IR cw laser used for optical trapping and achieved single-molecule fluorescence sensitivity: discrete stepwi...
متن کاملTwo-photon fluorescence imaging super-enhanced by multishell nanophotonic particles, with application to subcellular pH.
A novel nanophotonic method for enhancing the two-photon fluorescence signal of a fluorophore is presented. It utilizes the second harmonic (SH) of the exciting light generated by noble metal nanospheres in whose near-field the dye molecules are placed, to further enhance the dye's fluorescence signal in addition to the usual metal-enhanced fluorescence phenomenon. This method enables demonstra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2015